Progress on the NDE Characterization of Impact Damage in Armor Materials

Joseph M. Wells, Sc.D.

JMW ASSOCIATES

102 Pine Hills Blvd Mashpee, MA 02649-2869

(508) 477-5764

jmwconsultant@comcast.net

Terminal Ballistics Oral Session #1 - Abstract #1854

Grateful Acknowledgements to:

<u>W.H. Green, and N.L.Rupert,</u> ARL Weapons & Materials Research
Directorate, APG, MD, 21005

2002 ARL Summer Students

Mr. Jeff Wheeler (UCSC),

Mr. Herb Miller, (UMBC)

<u>Dr. S.J. Cimpoeru,</u> DSTO Aeronautical and Maritime Research Laboratory, PO Box 4331, Melbourne 30001, Australia

Dr. Christof Reinhart, Volume Graphics Gmbh, Heidelberg, Germany

Talk Outline

- Introduction Challenge for Ceramic Armor
- Perspective on Damage Diagnostics & Cognitive Visualization
- Advanced 3D Voxel Analysis & Visualization
- 3D XCT Damage Characterization & Visualization
- Summary Comments

Challenge for Ceramic Armor

Ancient Chinese terra cotta armor vest

- History: Application of ceramic armor against high L/D penetrators is in its' third millennium.
- Still Searching for Best Ceramic Armor!
- Knowledge & Understanding - to design, make and apply notional ceramic armor materials.

Perspective – Damage Diagnostics & Performance

- Penetration Analysis:
 - DOP, V50, Field Ballistic Tests

Ballistic Impact Penetration
Analysis

Damage Diagnostics

Ceramic Performance

DESIGN BASIS:

- Theoretical
- Empirical & Numerical Computational Focus
- Diagnostic/ Analytical & Mechanistic Focus
- Damage Diagnostics & Assessment:
 - Destructive Sectioning & 2D Examination
 - Traditional Nondestructive Examination
 - High Resolution X-ray Computed Tomography, XCT, for 3D Diagnosis
- Ideally we want a Engineering <u>Predictive Modeling Capability</u> addressing <u>both</u> penetration & damage considerations.

Perspective on Problem Solving & Cognitive Visualization

"Imagination is more important than knowledge.

Knowledge is limited. Imagination encircles the world." –

Albert Einstein

Define Problem (Challenge)

- Create Engineering Approach (Plan)
 - Data (Acquire & Process)
 - Information (Analyze)
 - Knowledge (Understanding)
 - Visualization (Intellectual Conceptualization)
 - Creativity (New Ideas)
 - Innovation (Putting Ideas to Work)
 - Applications (Utilization of Technology)
 - Presentation & Reporting

DATA

XCT Digital Image Scans

Image Processing & Reconstruction

Understanding of feature relationships & significance

Primer on Modern XCT

Advanced 3D Voxel Visualization & Analysis Software

StudioMax v1.2.1

www.volumegraphics.com

- Sophisticated image analysis and visualization capability to process, analyze and visualize voxel/volume data.
- Up to 3 GB of memory utilization with Windows XP Professional OS
- Multiple Import/Export File Formats
- Virtual Metrology Capabilities
- Variable Transparency & Virtual Sectioning
- Iso-Surface Extraction
- Segmentation & Grey-Value-Classification
- Porosity / Defect Analysis
- Wall Thickness Analysis
- Stereo Viewing Tool

Ballistic Impact Damage Diagnostics in Encapsulated TiB₂ Ceramic Targets

Encapsulated TiB₂ Experiment (N.L. Rupert, ARL ~1997)

- Single Shot (Full Penetration w/o compressive ring)
- Single Shot (Partial Penetration with compressive prestress ring)
- Double Shot (Full Penetration with compressive prestress ring)

Summary Damage Observations

Penetration Decrease with Prestress (17-4 PH Ring)

Surface Topography – Ring Steps, Radial Expansion & Cracking W-alloy Residual Fragments

Complex Cracking Modes

Impact Induced Porosity

Impacted TiB2 Ceramics

Penetration & Internal Damage

Sequential XCT Scans showing impact damage cracking features and residual penetrator (white) in TiB₂ S1wo Disk - near back (Z=015) to front face (Z=55).

Surface Topography -TiB₂ 1S w/o prestress

Macro-photograph - Normal View Surface Steps - NOT Visable Radial OD Cracks - ARE Visable

XCT 3D Solid Object - Oblique View Surface Steps – ARE Visable Radial OD Cracks – ARE Visable

OD Radial cracks on Impact Surface intersect at different loci

Impact Surface- Flow of Mixed Penetrator & Ceramic Rubble

TiB₂ S1wo

Step Height

C = ~3.5 mm

B = ~2.5 mm

A = ~1.2 mm

Step Heights Vary along the ring circumference

Note: Higher density (lighter color) of Steps vs Bulk TiB₂

Impact Surface Radial Expansion

Nonuniform – but localized radial expansion near impact surface

Axial Slice #51

Dia. A = 73.8 mm

Dia. B = 73.4 mm

Dia. C = 72.3 mm

Dia. D = 72.4 mm

Axial Slice #41

→ Dia. A = 72.7 mm

Dia. B = 72.9 mm

Dia. C = 72.1 mm

Dia. D = 72.0 mm

Fragments in TiB₂ - Segmented &

Virtual Transparency

Opaque 3D Solid Object Reconstructions

TiB, S1wo

Segmented & Variable Transparency

Fragments are Porous

W = ~22 mm H = ~24.5 mm

 $A_s = 4794 \text{ mm}^2 \text{ V} = 2076 \text{ mm}^3$

Virtual Metrology

TiB₂ S2w

Complexity of 3D Ring Cracking ont Cloud Damage

Early Point Cloud
Images of 3D Cracking
impact face

TiB2 1S w/o
Prestress Ring

Schematic of Concentric Hourglass Ring Cracking

Visualization of 3D Cracking Damage in TiB₂

Orthogonal Sectioning
3D Oblique View

Recent (Preliminary) 3D Images of Segmented Impact Cracking

S1wo

Impact Induced Porosity

Porosity along Ring Cracks

TiB2 1S w/o
Prestress Ring

Point Cloud <u>Visualizations of Spiral Cracking</u> in Ballistic Impact Samples

Ti-6Al-4V pc showing spiral cracking (Full Penetration)

TiB₂ surfaced pc showing spiral (Dual Impact – Full Penetration)

TiC pc showing spiral-blue (No Penetration)

Summary Comments

- The NDE Diagnostic Interrogation of Impact Damage in Armor Ceramics is a Challenging Task.
- XCT Diagnostics, Voxel Analysis, and 3D Visualization have revealed new details & insights into:
 - Impact Surface Topography & Damage
 - Internal Residual Fragment Distribution
 - Internal Mesoscale Cracking Modes
 - Impact-created Porosity/Void Distributions
 - Volumetric (3D) Damage Perspectives
- The XCT Diagnostic approach to armor ceramic Damage Analysis & Visualization is NOT yet widely practiced.
- Further Improvements in and Benefits from this technique are possible and realistically anticipated.

As far as the laws of mathematics refer to reality, they are not certain: and as far as they are certain, they do not refer to reality" – A. Einstein

